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1 ABSTRACT

Sensor-based IoT data is enhancing informationegiatp methods for urban planning in many ways and,
due to the growing data pool provided by these amnsmore and more cities and municipalities are
consequently putting the use of artificial intefiigce-based (Al) methods on their agenda. One dnedoan
planning that will benefit significantly from theew possibilities enabled by Al is that of infrastiure
monitoring. As the topic of the investment backtdgGerman road infrastructures increasingly pushes
public discourse, many potential areas for appbicadf such a system are opening up. Given thetfedta
large part of the German road infrastructure wasmd and built several decades ago, and consickan

the traffic volume has increased tremendously sihes, the urgency in the development of improved
maintenance methods is evident: Today's solutiamsirffrastructure monitoring are either too labor-
intensive, too resource-intensive or too inflexife the scenario at hand. However, a promisinghageor
further research opened up through the advent diilencommunication devices, such as smartphones, in
combination with artificial intelligence approachdshis paper describes the methodology appliechén t
ongoing research project DatEnKoSt, in which thasmparatively cheap and sensor-laden devices ack us
to realize low-cost acquisition methods: Mountihg smartphone in a vehicle, a multi-sensor datstican

be recorded, including, for instance, acceleromeé#ta, GPS coordinates, image or even audio dedan F
the datastream, features correlated with the raedliton can then be extracted, e.g., image praugss
methods may extract individual cracks from the imatata, signal processing can aid analysis of the
accelerometer data to determine strength of viimati etc.. Using supervised learning methods, these
features may be mapped to standardized profileth@fcurrent state of the infrastructure. Even more,
predictive methods can, in addition to a mere noomig of the current state of the infrastructureatde new
ways to provide more precise forecasts and evdptualeraging optimization algorithms, automatigal
derive the right maintenance measures for eacmgiiteation. The municipal preservation of traffizites
becomes more efficient and sustainable. The metbgg@nables the potential for further use in igatlof
real-time as well as predictive road infrastructon@nitoring such as winter road services.

Keywords: Sensor-Based, Predictive MaintenanceseSt€onditions, Infrastructure Monitoring, Artifadi
Intelligence

2 THEORETICAL FRAMEWORK

In recent years, the discussion regarding the tmast backlog in German road infrastructure has
increasingly entered the public discourse, maimlganse large parts of Germany’s road infrastrucie
planned and built several decades ago. Since tiesreral traffic volume increased steadily, with yyea
goods traffic in particular causing disproportianatamage to the roads due to heavy vehicle weight
(Bundesanstalt fur Stralenwesen, 2017). This rédseguestion, how to detect and monitor these dama
as well as predict potential issues in the contéxdmall public budgets. For instance, if fine d&wmin the
asphalt aren’t recognized as road deficienciehénsame way potholes are, they can cause just els mu
damage to vehicles. In general, two methods o&cbilg street-related data can be distinguishesemsor-
based approach —which our project is focussing and an approach based on user-generated-content
(UGC), where people manually detect and reporteissas can be seen in various projects in recems ye
(FixMyStreet, 2015; Rock Solid, 2019). In orderuaderstand the need for new approaches to morgtorin
and maintenance, it is worth taking a look at #heording practice currently in use. At the stateldhe
condition of the classified road network is detered at regular intervals according to the precigdeadines

for condition recording and assessment (BundedarfstaStralenwesen, 2020) although very few local
authorities can resort to such methods due to tge bosts involved. Instead, the condition is ulsual
determined in relation to the problem, but onlyraspectively by specialist personnel, who recoré th
problem areas on a sample basis and in a pardajogous manner (often still with pen and papgugh
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measurements are subjective by nature, which l¢éads suboptimal data basis for decisions on and
prioritisation of investment measures.

The automatic, sensor-based approach can be fuisterguished. One option is a ‘dedicated’ apphoac
which purpose-built vehicles are equipped with eengStreetScan, 2017; Ramboll, 2019; Vaisala, 020
which are primarily configurated and maintainedsleyvice providers. In the second approach, whichama
auxiliary character, ordinary vehicles are equippéth supplementary sensor technologies. Hence, no
purpose-built vehicles are needed and the dataegathis done by enhancing exisiting vehicles veidsily
attachable, consumer-market mobile sensor techesldgguch as smartphone e.g.). DatEnKoSt, presamted
this article, and other projects utilizing this eed approach exemplify the flexibility and ease of
implementation of such an approach (MIT Senseablly Cab, 2018; NewUrbanMechanics, 2019;
RoadBotics, 2019; Vialytics, 2020). The reason lieshe fact, that we wanted to design a light-vaeig
approach which can be adapted as easily as podsibtae communities and tailored to the respective
challenges at hand. In addition, due to limitedueses, only prolonged investigation cycles arsifga for
most communities, which makes an actually intemgsteal-time observation impossible. Those resjpbmsi
therefore lack a tool, which, in contrast to classtandardised procedures, proactively guarargemasre
cost-effective and yet qualitatively adequate staBssessment of road infrastructures. These new
technological and methodological possibilities uat# mobile communication devices (loT approach) for
sensor data acquisition, which can continuousliecbleal-time data and use Al for evaluation.

3 METHODOLOGY

A suitable solution for monitoring and maintenawnestreets for municipalities has to be affordakieple
and flexible to use. In this section, we first diss why and how a combination of smartphones and Al
algorithms can meet these requirements (Sec. &fbyégiving a general overview of the approachc(Se
3.2) and describing its major steps (Sec. 3.3-3.4).

3.1 Motivation

Public authorities need precise and as up-to-dapmssible data in order to maintain their roadslioey are
struggling to find appropriate, cost-sensitive waygather these data. Existing, standardized faihtata
acquisiton are offered by specialized companiesabeitoo expensive for most municipalities: Therage
price per kilometer can reach up to €150. For aerage German town that would mean hundreds of
thousands of euros in order to obtain the datdheir street network. In contrast, the methodolagyput
forward in this paper would allow for data gathgriof comparable magnitude for a fraction of thisnsu
There are two main reasons why a standardized orongt according to precise guidelines such as the
German ZEB are so expensive. The first reasoraishiighly specialized measuring hardware is besegu
Typically, measurement vehicles are equipped witlitiple precise sensors: Multiple laserscanners, to
measure the evenness of a road both in the drandgortohogonal direction, several cameras toitakges

of potential cracks and potholes, a customized toectsconsisting of a slanted wheel and more sanor
determine the grip of the road. As an example neasurement system S.T.l.LE.R. by the German company
Lehmann + Partner specialized in ZEB data acqaisthas an estimated value of roughly one milliorog
(Renninger, 2018). The second reason is the highualaeffort for processing the acquired data. In
particular, surface damages such as cracks haxedanotated for many thousands of photographs.

Interestingly, both reasons, the necessity of esipersensors and the high manual effort for ddieliiag,

can be adressed using Al, as examples from otheraids than urban planning show. Regarding the
necessity of expensive sensors to obtain measutsna¢ra sufficient level of quality, the example of
smartphone cameras demonstrates that intelligecepsing methods can, to a large extent, compeftsate
the deficiencies of the comparatively cheap hardwmed. Despite physical limitations due to thellssmze

of their image sensor, such as noise, or of thesds, such as color fringes, smartphone cameras ca
nowadays compete with medium-priced dedicatedaligameras. E.g., de-noising methods help to reduce
visible noise, other image processing methods renumlor fringes or distortion, and even image casttr
and exposure can be optimized automatically usikigaded methods (Draa and Bouaziz, 2014). Al can al
help when it comes to reducing manual data labediifigrt. Supervised learning methods can learn tow
label various types of data automatically base@ @et of training data containing exemplars. Onaulaw
example is object detection, that is, recogniziglgwant objects in images and assigning them tefiaed
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class, such as “car”, “dog” or “building”. This tgawvhich has applications in image search or sliargie
scenarios, can be solved with accuracy levels ofoup0% using Deep Learning approaches (Zhao gt al.
2019).

3.2 Overview

The insights outlined in the preceding paragraphivate the idea to transfer the same approach o th
domain of infrastructure monitoring, leveraging eitigent processing methods to allow for cheaper
monitoring equipment and reduced manual effort.
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Fig. 1: Overview of the proposed methodology areldhta flow.

The core of the proposed methodology (Fig. 1) ésube of smartphones as relatively cheap buwstidlatile
measurement hardware. Modern smartphones are eguipith a wide range of different sensors: multiple
image sensors, accelerometers, gyroscope sendorsphones and GPS receivers, to just mention st m
common ones. This means that, mounting such a eleni@ vehicle and driving along a road, a diverse
stream of multi-sensor data can be recorded (Fig).1In doing so, the respective condition of adras
implicitly reflected in the recorded data: The deoemeter will record stronger vibrations for unewver
cracked roads than for freshly paved ones. Whesnting the smartphone so that its camera is pgjntin
towards the road, individual potholes and surfacdlems will become visible in the recorded phoapips.
To derive the actual road condition from the ms#irsor data stream, this mapping of road quality an
recorded data has to be “inverted” for which suigey learning may be used to generalize from aexjsti
standardized quality data for a set of roads (Ejgh). This step will be detailed in the followisgction.
Estimating the current state of the road networkhis way already greatly lowers the monitoringtsos
However, Al can additionally be used to assisthia decision for resulting maintenance tasks, basetthe
monitoring data. Combining sequence prediction @ptémization approaches, the expected future crmmdit
can be estimated (Fig. 1, c) and automated suggestdr the next maintenance tasks to be underted&en
be generated (Sec. 3.4). Finally, the integratfaih® aforementioned Al components into a plantoaj for
municipal administrations (Fig. 1, d) is plannet@ieTool will allow the administrative staff to asserecent
monitoring results and predictive functions in as\eto use way.

3.3 Prediction of Road Condition from Sensor Data

The aim of this step is to map data recorded wdiildng along a particular street or road to a dtadized
quality profile as accurately as possible. On astrabt level, this corresponds to a supervisedchiegr
problem: Given smartphone sensor data and pre@sé&anng data — within the scope of this paper,wilé
focus on data obtained according to the ZEB stalsdarthe goal is to train a machine learning metiood
predict the latter from the former. A model trainedhis way takes the smartphone data recorded foad
segment as input and returns an estimate of impogaantitites such as the evenness, the crackidg a
others.

Achieving this requires three steps: First, a labetlataset has to be constructed, consisting df bot
smartphone-recorded data (Fig. 2) and ground tqutdity profiles for a set of street/road segmeand
ideally recorded at the same point in time or wsthall temporal delay. The second step involves the
extraction of a set of descriptive features frora taw sensor data recorded for each segment. Enffer
features can be extracted from different typesenfser data. The third step is then to train a suget
model to finally map the extracted features todbsired quality output based on the labeled dataset
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Fig. 2: Smartphones are mounted on the windsh@lgshicles and used as mobile sensor units. Iroeegt: Cyface GmbH.

3.3.1 Building a Dataset

Cracking Evenness

Fig. 3: Exemplary road segments from a ZEB acquoisitGood segments are colored green, problemagis mmge from yellow to
red (black means no measurement was possible)efhimage shows cracking while the right one dep@venness. (Own Source)

The foundation for any machine learning applicai®a dataset. In our scenario, the dataset wilsisb of
sensor data measured by using a smartphone onamgeand corresponding ground truth ZEB data for the
same set of roads on the other hand. ZEB measuteramn defined with respect to segments (cf. Fig. 3
These segments have a length of either 100 meters measured for a road (outside of town) or 2@&met
respectively, when measured for a street (insidetofvn). The location of each segment is unigdefyned

by the two adjacent nodes (“Netzknoten”) of thedroatwork that it is located in between of and Higeb in
meters that specifies the driving distance from @inhe nodes. The smartphone sensor data is redanger

the course of multiple sessions, alongside a GB&.trUsing a map matching algorithm (Karich and
Schrdder, 2014), data can be first assigned t@ahect street or road it has been recorded ortfaerd be
split up according to the defined segments it cavEor the corresponding standardized data, we tiaw
two sources: Data for roads has to be acquiredherietderal state level by law, usually in intervaiigour
years. In Germany, this data is publicly availalgien request and can be used as is. As outlin&edtion

2, the situation is different for most German comitias which cannot afford the same measurements.
Nevertheless, it is crucial to also include intrhaaitreets in the dataset as their characteristiosvary from
those of rural roads and a machine learning moulgltoained on country roads may not generalizd foel
communal roads, which our system is mainly intenfited Within the scope of our project we therefore
commission a ZEB acquisition for a set of streetslitain the necessary data.

3.3.2 Feature Extraction from Multi-Sensor Data

In the feature extraction step, a number of meduainguantities is derived from the original raw sen
inputs. The idea behind this is to reduce the msacgscomplexity and amount of training data for the
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subsequent supervised model (Sec. 3.3.2) by prayidiwith data that has a more direct relatiorthe
different quantities to be predicted than the unpssed sensor data. While a prediction of actuBl e&sults
from multi-sensor data has not been done befoffereint researchers have proposed heuristical rdettm
derive rough estimates of “street quality” usudised on the data of only a single type of sernsartine
(Chugh, Bansal and Sofat, 2014). The processimps giposed in these works can serve as buildmzkbl
to form a robust set of initial features. We wilkttdil some frequently chosen types of featureshe t
following, giving examples for accelerometer an@dga data.

Concerning accelerometer data, common simple fesitre the minimal or maximal sensor values recorde
for a segment (Allouch et al., 2017), various statdl moments (mean, variance, ...) of those values
(Rajamohan, Gannu and Rajan, 2015) or featuresratittally extracted from the frequency spectrum, fo
example using correlation-based feature selecobmthe sensor data which can be obtained usindatste
fourier transform (Allouch et al., 2017).

Regarding image data, one type of approach thatbeansed for feature extraction in the context wf o
proposed system are crack detection methods. Ginenput image, these methods highlight the pdrtkeo
image corresponding to potentially different typdscracks. Examples are the works of Mokhtari (2015
Quintana, Torres and Menéndez (2015) and Kim anal (2818). The output of these approaches can be
easily translated back into numerical featuregHerfinal supervised learning step, e.g. usingpiéreentage

of (road surface) pixels in the image correspondingracks. This is not very different from theuwsdtZEB
standards, where a similar estimate of the pergentd the surface suffering from cracks is deteedjn
albeit in a manual way.

3.3.3 Supervised Learning

Supervised learning is a certain type of machiaeniag setting in which the task is to learn a niaggrom
input to output data where the mapping is not giggplicitly but only implicitly in the form of a $eof
sample pairs of inputs and corresponding outpetgpectively (Russell and Norvig, 2016). In our cédlse
input data consists of the features extractedierrbad segments in the dataset (Sec. 3.3.1) vitnitdrn
have been computed based on the original sensosumagaents, the outputs are the corresponding
standardized quantifications of the road’'s conditineasured according to the ZEB guidelines. Thes wid
range of possible supervised learning algorithna thay be used in this step include, among others,
artificial-neural networks, decision trees or suppector machines.

3.4 Al-based Maintenance Support

Besides reducing the costs for a more objectivedatailed data acquisition that captures the cusete of
repair of a community’s streets as described inptieeeding section, artificial intelligence methaads in a
second step also facilitate maintenance planniregjuénce prediction methods can be trained using
snapshots of the state at different points in timegenerate forecasts of future degradation. Ctiyren
maintenance planning on the federal state levehasnly based on heuristics that try to model these
developments. A data-based approach using supénlisgrning can potentially offer more precise
predictions than a heuristical model. In particutatditional knowledge such as the traffic volurmerdime,

the type of pavement used or the speed limit catalken into account in the machine learning process
flexible way and enhance the forecast, even ifrteffects would be hard to capture using a hanttedta
model. On the technical side, several algorithmséguence prediction have regained attention tigcamd

will be evaluated within our project. Especiallycuerent neural networks (Hochreiter and Schmidhuber
1997) have proven to be valuable for difficult sexgee prediction tasks like translation (SutskeVamyals

and Le, 2014) or image captioning (Vinyals et 2015). When combined with an optimization approach
like a genetic algorithm (Goldberg and Holland, 8Q8these predictive methods can, furthermore, be
valuable for generating automated suggestions &nt@nance planning to assist municipal planners.

4 FIRST RESULTS
In this section we present some of the findingafaur still ongoing project.
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4.1 Image Analysis

Scenario A
Iy

Scenario B

3 o
sy S =
e et

Segmentation Line detection Region of interest

Scenario C

Fig. 4: Automated ROI detection. We combine infoiiovafrom line detection using the Hough transfoteit] and a semantic scene
segmentation approach based on Deep Learningsthhte to detect the parts of the image pertaiturige street or road (middle) to
automatically determine a quadrilateral regionndéiiest for each image. (Own source)

The image data recorded using the smartphone isobtige most valuable sources for the extraction of
meaningful features that can then be relevantferactual prediction of the condition. The firsbiplem that
has to be tackled working with the images is aaklit pre-processing. While the images used for
standardized ZEB measurements are taken usingpteutialibrated cameras mounted outside of theear s
the camera viewing direction is orthogonal to thdace of a road and images show nothing but safdee,

the situation is very different using a smartphamaunted in the windshield of a car for data actpisi
Only a small portion of the image, the one showimg street or road surface of the current drivenggl is
actually relevant for the feature extraction. Tdooaatically detect this region of interest (ROIlg wombine

a line detection algorithm based on the Hough foanms (Matas, Galambos and Kittler, 2000) (Fig. éft |
column) with a Deep Learning-based scene segmentatproach (Fig. 4, second column) (Zhou et al.,
2018). While the line detection step enables uddntify the boundaries of the lane (lane markiogsurbs,
Fig. 4, middle column), and therefore the left agtht delimitations of the ROI, the segmentatiolowat to
choose the top and bottom ones such that we neittlexde portions of the dashboard nor of thingsated
above the street’s “horizon”. This works quite wialimost of the typical scenarios, both inside (Bigfirst
row) and outside of a city (Fig. 4, second row)rrént limitations become apparent in situations mteere
are no prominent lines that can be clearly attatduio lane markings or curbs (Fig. 4, last row, at
crossroads or in turns. The computed ROIs for teegmple scenarios are shown in the rightmost coloimn
Fig. 4.

After the initial ROI detection, meaningful featar®r the supervised learning step have to be eriflaOne
approach to this is to use deep neural networksetieo detect the cracked regions within the ceopROls

to determine the share of the road surface thatdsked. In our initial experiments we compared two
existing methods: U-Net, a deep neural network tigcable to produce dense segmentations of arctobje
category of interest such as cracks (Ronnebergech@& and Brox, 2015) and a second approach which
performs a patch-wise classification of crackednem-cracked regions (Cha, Choi and Biyukéztirk, 720
Exemplary results for a sample image are showngn3= Both approaches can identify many of thesgné
cracks and allow to estimate the relative area®fctacked surface.
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Input image (Cha, Choi and Buyiikoztiirk, 2017) (Ronneberger, Fischer and Brox, 2015)

Fig. 5: Detection of cracks in the street surfade left column shows the original input image framich the ROI is cropped using
the described approach and then fed into two alatéction methods (second and third column). Flaeee outputs, numerical
features for the state of repair prediction canérved. (Own source)

4.2 Accelerometer Data Analysis
Z reell (mean : 0.2249 var: 0.1883) Z reell (mean : 0.3683 var : 0.2625)
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Fig. 5: Acceleration values measured for two 10mettsegments together with fitted normal distidng. (Own source)

A second important type of sensor data is that rdmzb by the smartphone’s accelerometer. Several
researchers in the past have proposed to analgeéeemmeter data to classify the quality of a stridetable
examples include the Roadsense (Allouch et al.7p@hd Maargha (Rajamohan, Gannu and Rajan, 2015)
systems which both assign a coarse quality labsiréet segments. Another way to approach the oramt
problem is to try to detect individual anomaliexlswas potholes from the data (Silva et al., 2008)«
problem setting differs in that we follow a supsed learning approach that tries to estimate theegeaof
different quality metrics as if they had been meadwsing a standardized approach. We thus resdnet
features proposed in the aforementioned papersabiutr use them as input to the final classificastep
rather than as immediate output of the monitoripsfesn. One of those features is shown in Fig. &, th
variance of a normal distribution fitted to the @lecation values (measured in the direction orthagto the
street’s surface).

5 FURTHER FIELDS OF RESEARCH

The described approach offers a wide variety ofiptial use cases for communities and public auiberin
general. Besides monitoring road conditions inaasitime intervalls as well as qualitive analysigarding

the asphalt conditions (detection of cracks, upktfic.) the project settings could also be appbezhalyzing
road markings and signages. This involves shomn teignages such as special road markings for
constructions sites as well as permanent roaddianitl markings. Especially in the light of selfvilrg cars,

the quality of these mentioned road markings vélichucial.

A more institutionalised use of mobile sensordim future is desirable, as general quality andaitty of
data, especially real-time data, would be greatiproved. Modern cars itself contain a huge amotint o
sensors (an average AUDI contains 4000 variousoserfer instance), and they can collect internal an
external data. The potential to make use of thia fta planning purposes is tremendous and verynjziag

for research (Massaro et al., 2017). Although iditaah to the discussed approach, the given example
DatEnKost will use artifial intelligence for pretie purposes as well. From this perspective, itasabout
the current status of roads, instead the aim wltdpredict cracks in the road (or other traffifitiencing
issues) in the future based on current data. Besidg, the spatio-temporal perspective of the onressents

is crucial in general. While data provided by catreethods is highly dependent on measurement gycle
this approach would also allow a consistent, rieadt map-based view of road conditions. The
implementation of such a system could either beedoyn equipping community-owned vehicles or by
employing volunteers. A combined solution of urlfi@et vehicles, which regularly run test intervdlging
their regular operation, in combination with a cdseurcing approach, i.e. data acquisition by peivat
individuals, represents the most promising configjon. A broader database for instance allowsrfsights,
not only into structural, but also temporary chanigeroad condition e.g. due to weather. This ipocaites
weather damage, winter services, wet leaves, te. potential of this approach is shown in a stogIT,
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which found in a comparable setting that even alsmanber of vehicles can be sufficient to covdaime
part of the urban network (O’Keeffe et al., 201Bhe approach used to detect road damage can also be
easily transferred to thematically similar problaneas, for example to report temporary danger spbis
applies, for example, to temporary road surfaceaimpents, such as damp foliage in autumn, or the
inspection of tram markings. In this context, itude also be possible to equip the municipal wimtsad
clearance services accordingly in order to detetgrial danger spots and ensure that the useadfsalt is
demand-driven. Depending on the application requérgs, this technical solution can be integrated in
private vehicles or into vehicles of public authies and thus represent a multitude of potentiainitic
fields of application in the context of 'predictiveaintenance’. The multi-functionality of the “sens
smartphone” allows the further integration of otlsmnsor funcitonalities in order to gather addaion
relevant data such as environmental data, drivingd, parking situation, etc.

Though, this flexible and adaptive approach alsme®with potential risks. From a technological pah
view, the respective field is still novel and inative and thus needs further pratical elaboratmoarder to
create reliable and profound data. Besides the fagefield studies regarding the data gatheringhods,
processing extremely large amounts of data has timdtitutionalized. In addition, respective to tjigen
use case, the quality of the data is to be guazdntehich will be especially relevant in cruciapasts such
as bad weather and lighting conditions. There @ lagal questions to be answered, for examptegards
to image recordings and related to that, the saiakptance is also to be considererd, as, edpeitial
Germany, the population is highly sceptical in regato data protection and image rights. And ifadat
gathering will be done with a UGC-approach, the tiomed obstacles have to be taken in consideration
order to convince citizens to particiapte.

6 CONCLUSION

Due to the fact, that the thereotical promises e to be verified in further project work, thengral
practicability and reliability of the project apgch have yet to be proven. These demands will bgechby
difficult to foresee environmental influences asllvess technical constraints. Will the smartphoneduh
approach be adapted only on designated cars fiamices, the range of potential influencing factarsld be
reduced and controlled. In this approach, speeidlibad analysis won't be replaced, because tleeradd
especially in the light of high quality of data arediability in accordance with LIDAR-measurememis
persist in the future for detailed quantitative lgsia. Though, for an adhoc qualitative analysts t
described methdod will enable multiple optionsdommunities. A further benefit is the potentiakigitation

of UGC. Though, this use comes with the given galnancertainity regarding the “quality” of sensor
installation in the car which has to taken intosidaeration. The findings of the project will demtvage that
the innovative combination of light-weight sensectinology and corresponding Al components for gitie
and municipalities is a universally applicable tiplthe possible use of which makes a positivetrijoution

to the fields of work of the municipal authoritiess shown in the paper, the approach provides hlaaae
for public authorities to install a lightweight $gm based on a sensor-application which is eassiailable.

By developing adjacent services based on this itpa@&mmunities can offer other cost-effective $ezs
and and save personnel and organizational costhieinlong run. With the interoperable design, the
integration of other sensor connected via smartphtime flexibility also for other potential use eass
given. Thus, the objective of a demand-oriented nm@intenance system for communities with frequent
update possibilities becomes achievable.
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