

A Preliminary Study of Factors Affecting the Urban Transportation Energy Consumption of Urban Form in Taiwan

Chin-Ying Chen, Hsueh-Sheng Chang

Introduction

Development of Compact City

Study Area and Methodology

Analysis and Result

Conclusion

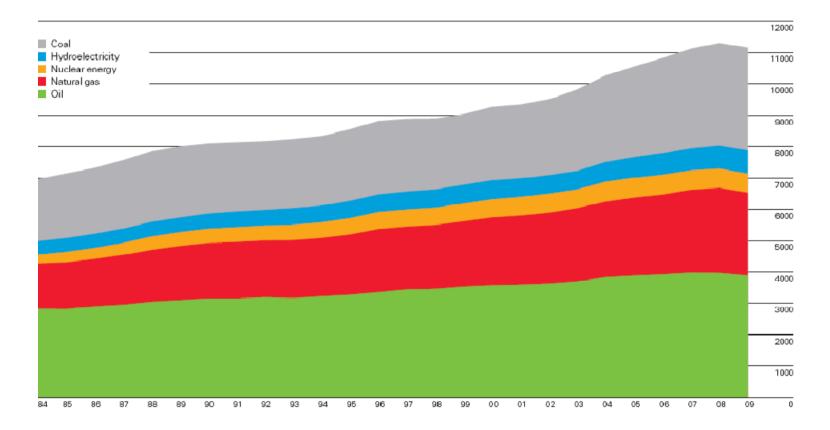
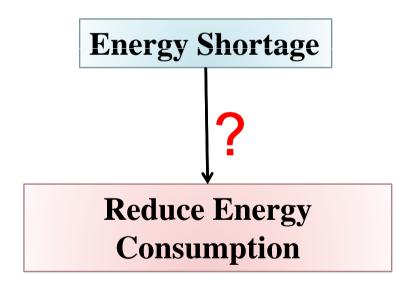



Fig1. The world's energy consumption

To view the status of the Taiwan's energy development, dependence on imported energy has reached up to 99.3% in 2007.

Introduction

Rickaby(1987) discusses the relatedness among the urban formand
 the energy use. He discovered that no matter what kind of the
 urban development can save more energy consumption which
 compared to the original plan.

1989 The studies of Newman and Kenworthy (1989) on the relationship between urban density and transportation energy conclude that the Compact City is good for energy efficiency.

Breheny (1992) think that compact city would be overcrowding,
 lack of urban open space living environment, resulting
 in more energy consumption and the cost of pollution.

1995 Owen (1995) mentioned that the key issue of compact city is what kind of forms of development and accessibility, as well as how flexible combination of policies, financial and other tools to make sustainable development.

Introduction

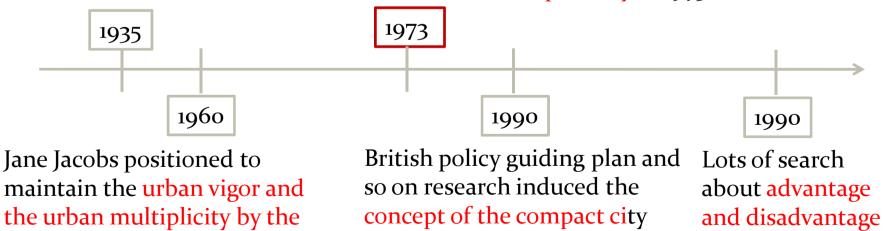
The impact of the trasportation enrgy consumption would be different with different compactnesss.And the impact would be different because the city has different the public transportation ,landuse zoning,infrustruction and so on. (Yeh kuang-yi,et al.,2003)

 Urban Planning

 Energy Shortage
 Reduce Energy Consumption

Question:

- 1. What kind of urban forms in order to reduce energy consumption to achieve sustainable development?
- 2. How compact dose it achieve to reduce transportation energy consumption and optimal urban development?


Development of Compact City

Le Corbusier proposed that enhanced the urban density to solve the congestion.

high density development.

The compact city appears clearly most early by George Dantzig and Thomas L. the Saaty.These two mathematicians proposed about the spatial form ,spatial characteristic and the function indicators of the compact city in 1973.

gradually.

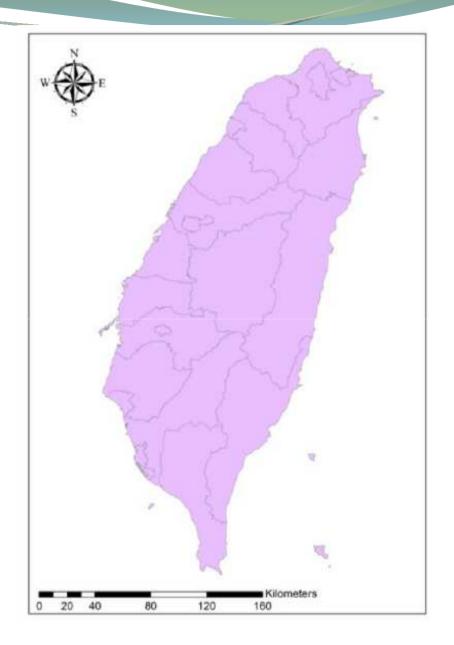
of Compact City.

7

Definition of Compact City

Scholar	Year	Definition
Williams	1999	The compact city paradigm is based on concepts of efficient land use and urban containment, but includes alongside this a number of goals and parameters.
Jenks ,Burgess	2001	He believes that the spatial characteristics should be moving in a dense continuous improvement caused by economic development, in order to achieve economic, environmental and social sustainability.
Burton	2002	 He pointed out the compact city was usually described as one or other or all of three types of city, two that are related to 'product': 1. the high-density city, 2. the mixed-use city, 3. the intensified city, it is related to process.

• This research uses **Curve Estimation** analysis, carries on the examination in view of the urban form to influence of the energy use.


Calculates various cities energy use and compactness. The compactness of various cities will divide into two groups, a group for the high compactness city, and a group for the low compactness city.

Analyze the energy consumption impact belong to urban compactness and urban form.

Study Area

•Taiwan is located in the Southwest part of the island, an average density of 547.79 persons/km, and total area is approximately 2016 km².

•The study areas are 22 cities in Taiwan.

Variables and Indicators

Dimension	Variable	Indicator						
		•Population per hectare						
	Density	•Develop household of number the land per hectare						
Compactness		•The proportion of Housing and non-housing						
	Mix Use	•Entropy						
		•Retail trade number per hectare						
Energy	Energy Consumption	•Average each gasoline and diesel oil consumption						
	Urban Service Function	 Industry and commerce factory number 						
Urban Form	Development Degree of Transportation	•The utilization ratio of Transportation						
UIDall FOIIII	Information circulation	•The Rate of Internet Surfer						
	Knowledge education level	•Above 15 years old of education level structure - technical college population and above						

Compactness of Taiwan Cities Development

•There are twenty-two cities in Taiwan. The urban compactness and the average energy per person consumption, as we can see in Figure.2 and Figure.3.

•By Figure.2, the higher compactness cities mainly distributes in the north and south two main cities.

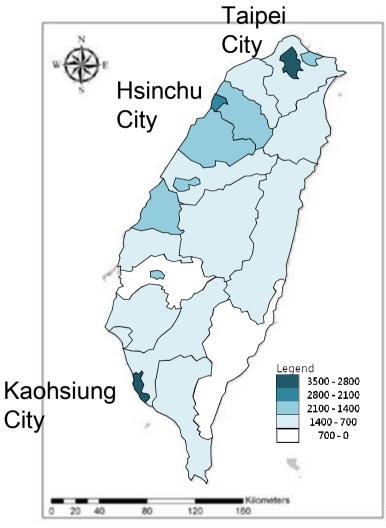


Fig.2. Urban Compactness in Taiwan

Energy Consumption of Taiwan Cities Development

•By Figure.3, the higher energy consumption cities mainly distributes in the north and south two main cities. But it is not the same cities with the higher compactness cities in Figure.2.

•To compare these two figures, it appears that the higher compactness cities in Figure.2 instead is the average each person of energy use is lowest in Figure.3.

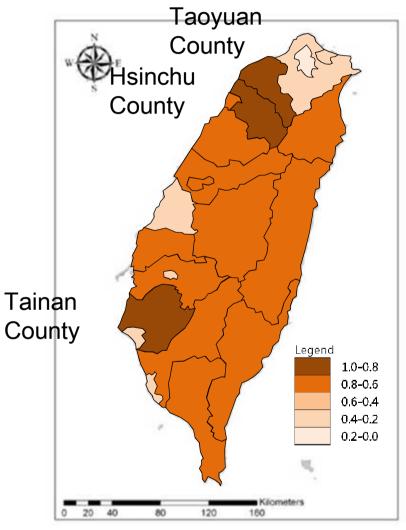
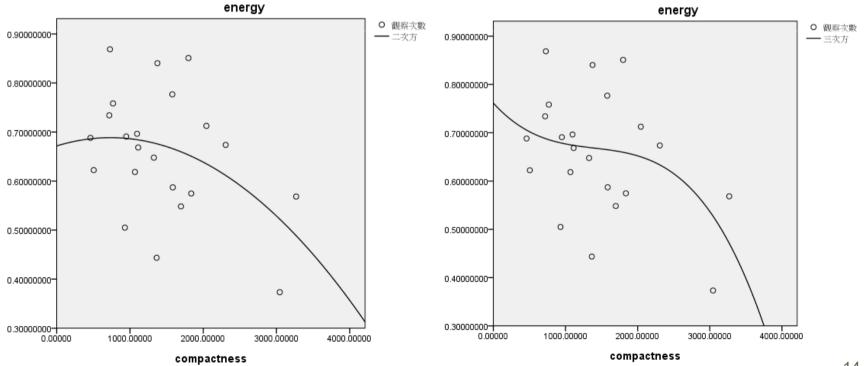
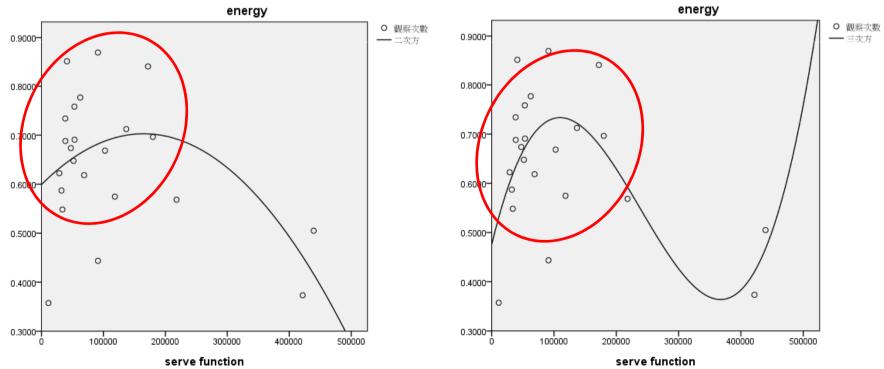
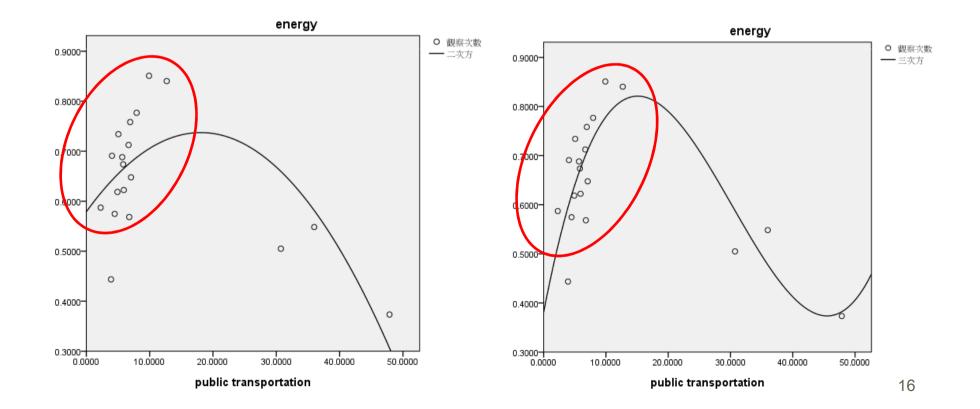



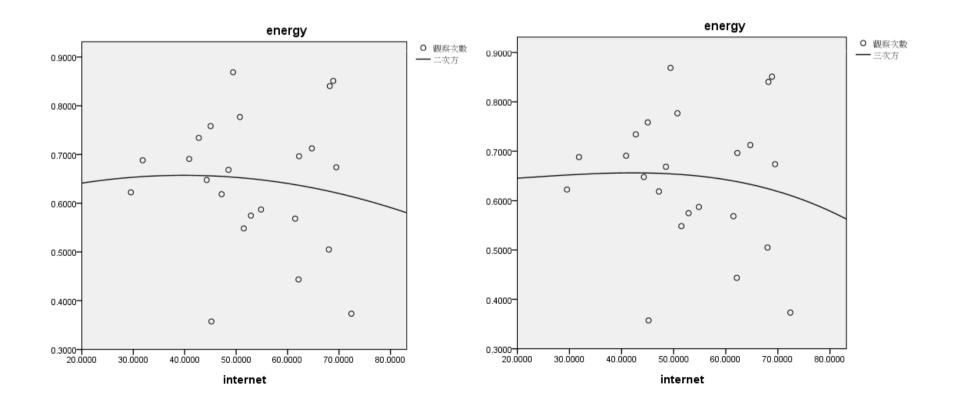
Fig.3. Average Energy per person Consumption in Taiwan


Compactness vs. Energy Consumption

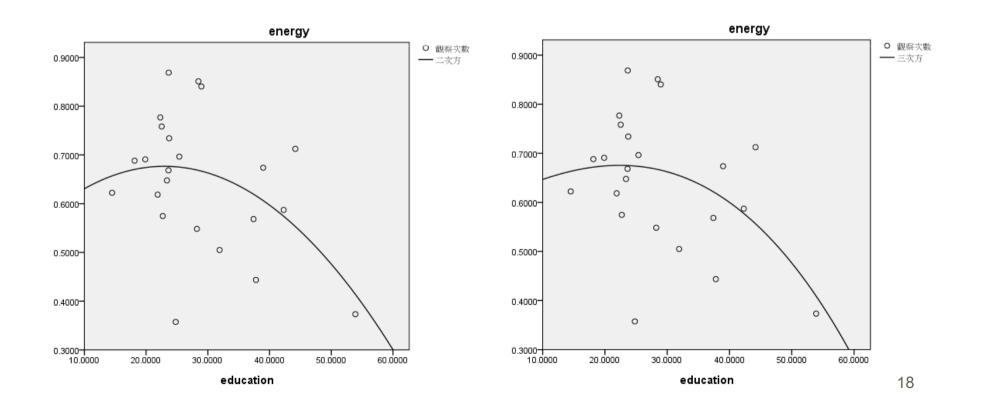
Equation		Мо	del Summ	ary	Parameter Estimate				
Equation	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Quadratic	.176	2.023	2	19	.160	.672	.000	.000	
Cubic	.183	1.340	3	18	.293	.761	.000	.000	.000


Urban Service Function vs. Energy Consumption

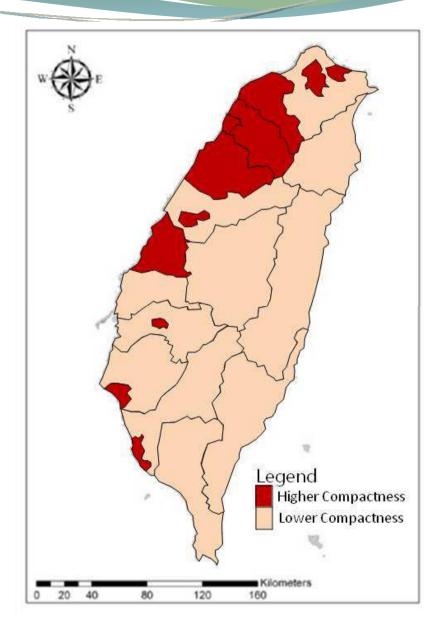
Equation		Mo	del Summ	nary	Parameter Estimate				
Equation	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Quadratic	.262	3.554	2	20	.048	.599	.000	.000	
Cubic	.345	3.339	3	19	.041	.476	.000	.000	.000


Development Degree of Transportation vs. Energy Consumption

Equation		Мо	del Summ	ary	Parameter Estimate				
Equation	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Quadratic	.476	7.281	2	16	.006	.579	.018	.000	
Cubic	.670	10.167	3	15	.001	.381	.066	003	.000


Information circulation vs. Energy Consumption

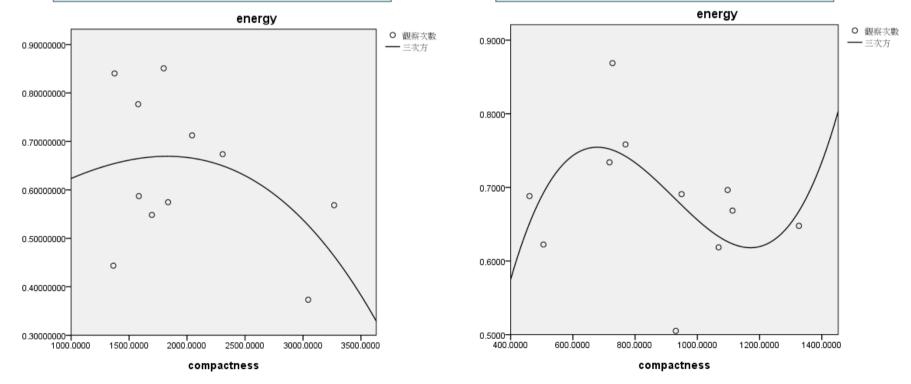
Equation		Mo	del Summ	ary	Parameter Estimate				
	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Quadratic	.010	.106	2	20	.900	.593	.003	.000	
Cubic	.011	.111	2	20	.895	.636	.000	.000	.000


Knowledge Education Level vs. Energy Consumption

Equation		Мо	del Summ	ary	Parameter Estimate				
	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Quadratic	.196	2.439	2	20	.113	.532	.013	.000	
Cubic	.196	1.547	3	19	.235	.591	.007	.000	.000

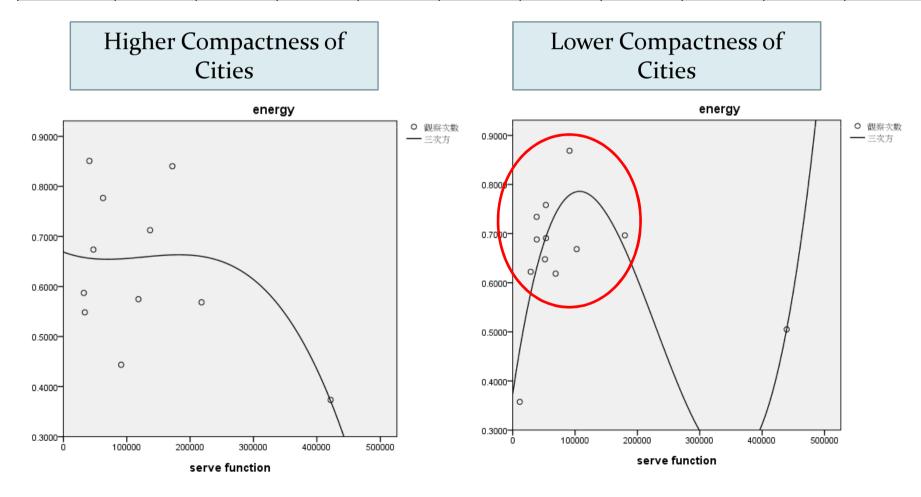
Cluster Analysis

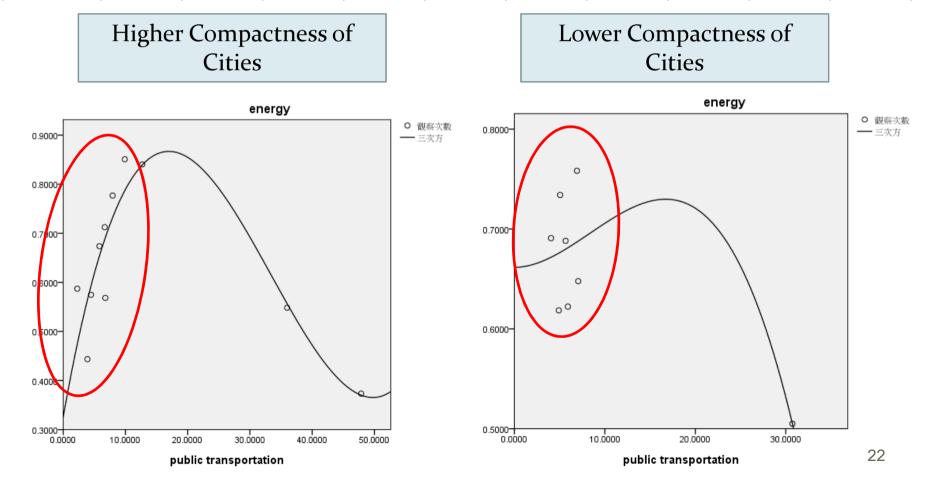
The compactness of various cities will divide into two groups, a group for the high compactness city, and a group for the low compactness city. In order to understand different compactness and the energy consume relations. (See Table2)



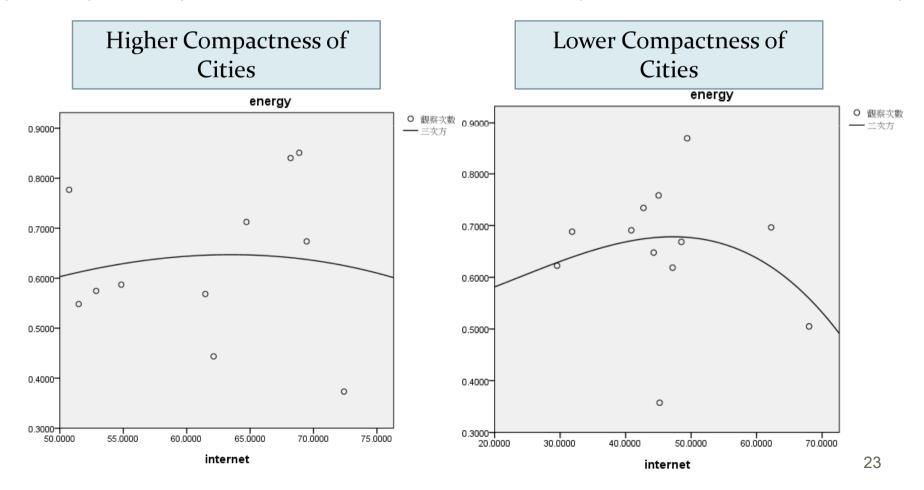
Compactness vs. Energy Consumption

	Equation		Mo	del Sumn	nary		Parameter Estimate				
	Equation		F	df1	df2	Sig	Constant	b1	b2	b3	
Higher	Cubic	.201	1.008	2	8	.407	.494	.000	.000	.000	
Lower	Cubic	.280	.906	3	7	.485	733	.005	.000	.000	

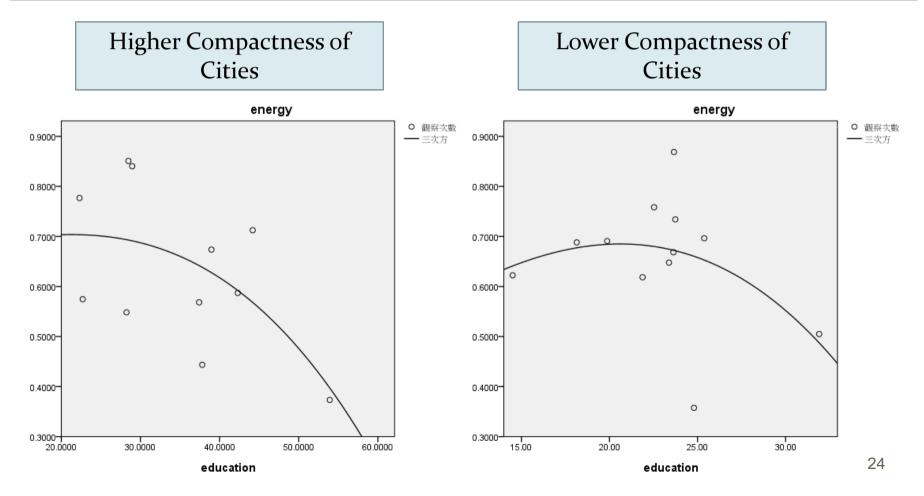



Urban Service Function vs. Energy Consumption

	Equation		Mo	del Sumr	nary	Parameter Estimate				
	Equation		F	df1	df2	Sig	Constant	b1	b2	b3
Higher	Cubic	.313	1.063	3	7	.424	.669	.000	.000	.000
Lower	Cubic	.607	4.125	3	8	.048	.374	.000	.000	.000


Development Degree of Transportation vs. Energy Consumption

	Equation		Mo	del Summ	nary	Parameter Estimate				
	Equation	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Higher	Cubic	.791	8.809	3	7	.009	.325	.072	003	.000
Lower	Cubic	.611	3.926	2	5	.094	.662	.000	.001	.000


Information circulation vs. Energy Consumption

	Equation		Mo	del Sumn	nary	Parameter Estimate				
	Equation	R Square	F	df1	df2	Sig	Constant	b1	b2	b3
Higher	Cubic	.008	.034	2	8	.967	054	.017	.000	.000
Lower	Cubic	.083	.409	2	9	.676	.520	.000	.000	.000

Knowledge Education Level vs. Energy Consumption

	Equation		del Summ	nary	Parameter Estimate					
	Equation		F	df1	df2	Sig	Constant	b1	b2	b3
Higher	Cubic	.343	2.089	2	8	.186	.646	.004	.000	.000
Lower	Cubic	.179	.982	2	9	.411	.315	.027	.000	.000

Conclusion

- According to the above result and the analysis, it may understand that the different urban form truly would affect the energy use. But in different compactness situation, it also will have the different influence energy consumption. In order to achieve sustainable development, it should probably consider the more urban variable in the future.
- Transportation is one of the major energy consumption department.Many experts advocate to use alternative energy.However,this research prove that various urban form and compactness would consume different energy.Therefore,when urban planner will make the urban planning, they should consider the energy consumption impact of the urban form and compactness.Then the city can achieve the sustainable development.

Q & A

Chin-Ying Chen Department of Urban Planning, NCKU Master Program student chadjun@hotmail.com